a2 United States Patent

Hoskinson et al.

US009218335B2

US 9,218,335 B2
Dec. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54) AUTOMATED LANGUAGE DETECTION FOR

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

DOMAIN NAMES
Applicant:

Inventors:

Verisign, Inc., Reston, VA (US)

Ronald Andrew Hoskinson, Oak Hill,

VA (US); Lambert Arians, Ashburn, VA
(US); Marc Anderson, Ashburn, VA
(US); Mahendra Jain, Sterling, VA (US)

Assignee:

Notice:

VERISIGN, INC., Reston, VA (US)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 130 days.

Appl. No.: 13/648,645

Filed: Oct. 10, 2012

Prior Publication Data

US 2014/0100845 A1l

Int. Cl1.

GO6F 1727
GO6F 17/22
HO4L 29/12

U.S. CL
CPC

Apr. 10, 2014

(2006.01)
(2006.01)
(2006.01)

GO6F 17/275 (2013.01); HO4L 613035

(2013.01); GOGF 17/2217 (2013.01); HO4L
61/1511 (2013.01); H04L 61/302 (2013.01)

Field of Classification Search

CPC ... GO6F 17/28; GOGF 17/275; GOGF 17/2217;
GOGF 17/2223; GOG6F 15/16; HO4L 61/302;
HO4L 61/3035

USPC

See application file for complete search history.

102

106

108

704/4,7, 8, 9, 10; 707/767, 772

e N

\

Receive IDN
Request

Begin

Detect Language

Yes

(56) References Cited

U.S. PATENT DOCUMENTS

5,689,616 A * 11/1997 Li oo 704/232
6,167,396 A * 12/2000 Lokkencc...... 707/737
6,314,469 Bl 11/2001 Tan et al.
6,332,158 B1* 12/2001 Risleyetal. 709/219
6,393,445 Bl 5/2002 Chien
6,895,430 B1 5/2005 Schneider
6,901,436 Bl 5/2005 Schneider

(Continued)

OTHER PUBLICATIONS

Author Unknown, “IANA Internet Assigned Numbers Authority—
Repository of IDN Practices” webpage, http://www.iana.org/do-
mains/idn-tables, accessed Nov. 7, 2013, pp. 1-6.

(Continued)

Primary Examiner — Pierre-Louis Desir

Assistant Examiner — Forrest F Tzeng

(74) Attorney, Agent, or Firm — MH2 Technology Law
Group, LLP

(57) ABSTRACT

Methods and systems for automated language detection for
domain names are disclosed. In some embodiments, a method
for detecting a language of an Internationalized Domain
Name (IDN) comprises receiving, by an I/O interface, a string
of characters for the IDN; receiving training data, including a
plurality of multi-gram analysis for a set of languages; ana-
lyzing, by a processor, the string of characters based on the
training data, wherein the analyzing includes extracting a set
of multi-grams from the string of characters and comparing
the extracted set of multi-grams with the training data; detect-
ing the language of the IDN based on results of the analyzing.
In some embodiments, the method further comprises com-
paring the detected language of the IDN with a user selected
language and using the IDN to generate a domain name, if the
comparing indicates that the detected language of the IDN is
consistent with the user selected language.

18 Claims, 7 Drawing Sheets

/100

Allow Creation with
110 IDN

Interact with Requester

US 9,218,335 B2
Page 2

(56)

6,973,505
7,107,325
7,130,792
7,188,138
7,194,552
7,280,999
7,386,438
7,546,381
7,565,402
7,584,089
7,774,432
8,037,168
8,224,994
RE43,690
8,380,488
RE44,207
8,458,161
8,548,797
8,612,565
8,635,340
2003/0163300
2004/0015584
2004/0044791
2008/0016233
2008/0059607
2008/0320167
2009/0192905

References Cited

U.S. PATENT DOCUMENTS

Bl
Bl
B2
Bl
Bl
B2 *
BL*
B2
B2
B2
B2
B2
Bl
E
BL*
E
B2
B2 *
B2
Bl
Al*
Al*
Al
Al
Al
Al
Al*

12/2005
9/2006
10/2006
3/2007
3/2007
10/2007
6/2008
6/2009
7/2009
9/2009
8/2010
10/2011
7/2012
9/2012
2/2013
5/2013
6/2013
10/2013
12/2013
1/2014
8/2003
1/2004
3/2004
1/2008
3/2008
12/2008
7/2009

Schneider

Krish

Tokieda et al.

Schneider

Schneider

Chung etal.cccooevvviens 1
Franzetal.cccocvvnrn. 704/8
Tout

Schneider

Kuwata et al.

Cartmell et al.

Schneider

Schneider

Schneider et al.

Livetal. ..ccoovvvririnrnnnne 704/4
Schneider

Schneider

Kimetalcccooeevvvnvnnnnnnn 704/8
Schneider

Schneider

Kasvand etal. 704/2
Cartmell et al. 709/225
Pouzzner

Schneider

Schneider

Collignon

Olesetal.occcvevvrvnnnnn 705/17

2010/0274553 Al 10/2010 Raisch

2011/0106924 Al* 5/2011 Colosietal. ... 709/222
2012/0096019 Al* 4/2012 Manickametal. 707/767
OTHER PUBLICATIONS

Kent Johnson, “guess-language, Guess the natural language of a text”
webpage and project, Google project hosting, http://code.google.
com/p/guess-language, accessed Nov. 7, 2013, p. 1.

Author Unknown, “guess-language, Guess the natural language of a
text, trigrams” webpage and project, http://code.google.com/p/
guess-language/source/browse/trunk/guess__language/trigrams/,
accessed Nov. 7, 2013, pp. 1-2.

Author Unknown, “Naive Bayes classifier,” Wikipedia webpage,
http://en. wikipedia.org/wiki/Naive_ Bayes_ classifier, accessed
Nov. 7, 2013, pp. 1-9.

Banday, M. Tariq “Recent Developments in the Domain Name Sys-
tem”, International Journal of Computer Applications (0975-8887),
vol. 31, No. 2, Oct. 2011, http://research.ijcaonline.org/volume3 1/
number2/pxc3875227 .pdf, pp. 1-8.

A. Stone, “Internationalizing the Internet”, Internet Computing,
IEEE, vol. 7, No. 3, May-Jun. 2003, pp. 11-12.

Gabor Hojtsy., “Multilingual Web Applications with Open Source
Systems”, Budapest University of Technology and Economics Fac-
ulty of Electrical Engineering and Informatics Department of Control
Engineering and Information Technology, May 18, 2007, http://
hojtsy.hu/files/GaborHojtsyThesis.pdf, pp. 1-85.

* cited by examiner

U.S. Patent Dec. 22, 2015 Sheet 1 of 7 US 9,218,335 B2

100
Begin) /_

Receive IDN
102 ~"| Request

104~ Convert

106 W Detect Language
No
108 —" ‘@
J' Yes 112
Allow Creation with . /
10—~ IDN Interact with Requester
v
End

FIG. 1

U.S. Patent Dec. 22, 2015 Sheet 2 of 7 US 9,218,335 B2

200

Trigramsand Their Frequend es per 10,000 wordsin English
1 2 3 4 =] 5] 7 g
202 all #TH2Z30 AT# 41 HIS 26 #DE19 | PRO16 | #FI13 IGH11 OUN 10
204 Ve 2| THE 192 ENT 38 #ON 26 #CA 19 | RY# 16 PER 13 OVE 11 #LA 10

3| HE# 172 #BE 38 ERE 26 RS# 19 | REA15 ouT 13 IDE 11 HAD 10
4 | #5# 129 TIO 37 #PR25 CH# 19 | EVE 15 INT13 §5# 11 #TR 10
5| ED# 86 OR# 37 #8T 25 ME# 19 | #FR 15 #5413 H#UN 11 BLE 10
5| #OF 31 #HE 36 #HIZ2S CON 19 | 5TA 15 ECT 13 ULD 11 PRE 10
7| #AN T8 #RE 34 TH# 25 ITH 18 #WO0 15 | OT# 13 #EX 11 HIN 10
q| OF# 77 LY# 34 LL#24 LD# 153 | TE# 15 ILL13 INE11 WHI 10
g | ND# 75 #HA 33 #IT 23 THI 18 #LI1 15 OME 12 #BY 11 AR# 10
10| #IN 71 HER 32 LE# 23 RES 18 ESS 15 #PO 12 DER 11 OTH10
11| ANDTO FOR32 CE#23 #5018 | AD#15 | MAN12 #L0O 11 STI10
12 | #TO 64 #FO 31 #I§23 TED 18 | #5010 14 #NE 12 ORE 11 #MI10
13 | ING 62 #WA 31 | #NO 23 #MO 13 | COM 14 [#OR12 CTI11 FRO 10
14 | NG# 62 EN# 31 TS# 23 NCE 17 | #AT 14 #CH 12 STR 11 TRA 10
15 | ER# 61 AL# 30 ATE 22 WIT 17 | IVE 14 IST 12 #Y0 10 YOou1o
15| TO# 58 AN# 30 IT# 22 #SH 17 | #BU 14 | #HO 12 #FA 10 STE 10
17 | ON# 55 #WH 29 | VE#22 ERS 17 #PA 14 #DO 12 NTE 10 OWi# 10
15 | IN# 54 NT# 28 SE#21 MEN 17 | TY# 14 ICA12 EY#10 #5110
19 | IS# 49 #MA 27 | ALL 21 NE#17 | #ME 14 | AVE12 ROM 10 ITI10
20 | #A# 48 #WI127 WAS20 #AR16 | ONE14 | GHT 11 RED 10 UND 10
21 | #CO 47 HAT 27 UT# 20 NS# 16 | BE# 14 BY# 11 #LE 10 BUT 10
o0 | ES# 47 TER 26 VERZO ONS16 | EST 14 TIN 11 #I# 10 ET# 10
27 | ION 47 THA 26 #SEZOQ ARE 16 | EAR 14 OuUL11 #PE 10
24 | RE# 44 ST# 26 #AS520 #DI16 NOT13 [OM#11 |[OUR10
o5 | AS# 42 ATI 26 H#WE 20 #AL16 | AY#13 |AIN11 RAT 10

FIG. 2A

U.S. Patent Dec. 22, 2015 Sheet 3 of 7 US 9,218,335 B2

(- 250

Trigrams and Their Frequencies per 10,000 words in French

) 2 3 4 3 |5 7 g
250 T ES#1359 [ET#325 | LIE 188 | ONN #PO TN1d6 | TES96 |RIT 51

#DE 1103 | DES 294 | #D" 186 | EST R5# MIN 106 | SE195 OND 80
#LE 802 | UE# 279 | TE#184 | TS# #SE 130 | NTE 104 | EIL 95 UI+# 50
ION733 |EME CLE183 | CTI145 | UNE ESI104 |VER94 | #0R 80
DE# 735 |#DE 266 |ITE183 | ONT AU# S5I0104 | #CA93 | ALI G0
IE#733 |UR# 261 |ICL132 |ES# COM RAT 104 | 4IN 91 NIS 80
NT#473 |NE#259 |IQU 181 | SEM BLE IEC103 |STR91 |PRE?79
TIO 651 #ET 244 | EMB #AR #RE DEN 103 |IRE91 AT# 79
ENT 602 | #AU0 232 | #EN 177 | OOV BLI125 | TI¥103 |LIQ 90 REP 79
#C0 527 | ART 232 | ER# 176 | #5U 0N # IDE103 |IT+# 90 ETE 79

L= I s B = r R) R B S (TR LN Ed

[f=)

s
Q

11 | ON#3505 | #DU #PE 176 | #UN TER ERN102 | #MAG7 | ANI7G
1o | LES497 TRE 221 | #Q0 OI# 5T# UTI 102 | S5l 856 NDI 75
13| #LA473 | RTI219 | ITI174 | PEU EES122 | #E5102 | OMP 86 | ANC77

#PR 478 | DO# L'A1a9 | 5SE #DA POS101 |TUT 35 | #TE 764

s
F=y

LA# 474 |PRE 210 | LOI 145 | OU# FUB IEM 101 | ONCS4 | ORI 76
ONS387 |TIC210 | RES166 | CE# UBL EOT99 |NST84 |DU76

RE#386 | AR#203 | TE#166 | NCE #CE URS98 |EPUSE |OSI75

ATI 373 #A# 204 | ANT 165 | IS#137 | ALE SID 93 SIT &4 ROP 75
#L' 357 PRO 201 | AS§157 | NNE NAT POU97 |#A534 | ORG74
NS# 356 | #50199 | #0U ECT ELL 114 | IST 97 IVI 54 AUX 74
#PA 349 |EE#193 | EUR153 | LEE TIT 113 | TAT97 | ESS583 RGA74
CON 339 |#RE193 | EN# 153 | UT# Ux# URE97 |QUIS3 |UES74
PAR 331 | OUR UVE 149 | MBL N3E NEM 97 |ITUS2Z |RANT74
QUE 327 |RES190 | IL# 147 |DAN TRA CES97 |INIGS2 GAN 74
MEN 326 | #L0 189 | AN5S147 | SON STI107 |SUR %6 | #MES1 | #F173

FIG. 2B

-y
wn

-y
(=2}

=y
-]

s
=]

-y
[i=}

[oa]
(=]

[a]
-

]
=)

[}
o

[}
B

[a]
[0

U.S. Patent Dec. 22, 2015

Sheet 4 of 7 US 9,218,335 B2

Begin)

/— 300

Extract n-grams 302
from IDN ~
Load Training | ~ 304
Data
Analyze IDN L~ 306
Detect Language _—~ 308
A 4
End

FIG. 3

U.S. Patent Dec. 22, 2015 Sheet 5 of 7 US 9,218,335 B2

/ 400

l

Propose

402] Another
Language

404
No

Accepted?

408
Yes f

Create Domain Log Failure to Create
406 ~ | Under New Domain

Language

FIG. 4

U.S. Patent Dec. 22, 2015 Sheet 6 of 7 US 9,218,335 B2

/ 500

Begin)

Propose
502 — | AnotherIDN [

504

Accepted? No

Yes

Create Domain with
506 — |Proposed IDN Under
Selected Language

Log Failure to Create
Domain

End

FIG. 5

U.S. Patent

—Input—+

«4-outputq

A

DB

Classifier f

N-Gram f

Dec. 22, 2015 Sheet 7 of 7 US 9,218,335 B2
/ 600
610
é 620 630
| > 11O Interface Decider |— | Farser
L 4
640

650

FIG. 6

US 9,218,335 B2

1
AUTOMATED LANGUAGE DETECTION FOR
DOMAIN NAMES

TECHNICAL FIELD

The present disclosure relates generally to methods and
systems for creating domain names and in particular for auto-
mated detection of languages of domain names.

BACKGROUND

A domain name, such as verisign.com, is an identification
string that defines a realm of administrative autonomy,
authority, or control on the Internet. Domain names are
formed by the rules and procedures of the Domain Name
System (DNS). A DNS allows a domain name to be in a
character set that is based on ASCII characters and does not
allow domain names that include non-ASCII characters used
in various non-English languages and represented, for
example, by multi-byte Unicode character sets. To remove
such constraints, the Internet Corporation for Assigned
Names and Numbers (ICANN) has approved a system called
Internationalized Domain Names in Applications (IDNA),
which maps Unicode strings onto a valid DNS character set
using an encoding known as Punycode. Punycode is an ASCII
representation of a Unicode character, designed as such to
allow multi-byte characters to be represented in the ASCII-
only domain naming system. For example, the Unicode name
“kebenhavn.eu” for a domain name may be mapped to the
ASCII name “xn--kbenhavn-54a.eu”.

Many domain name registries have adopted IDNA to
enable the creation of non-ASCII internationalized domain
names. An internationalized domain name (IDN) is a domain
name represented by local language characters such as Uni-
code characters. IDNs enable Internet users to navigate the
Internet in their preferred languages. An IDN may be used to
represent a top-level domain (TLD) similar to dotcom (.com)
or dot-edu (.edu), or may be registered as second-level
domains (2L.Ds), similar to verisign in verisign.com, on an
existing TLD.

Under some existing domain name creation systems for
creating an IDN, registrants must not only enter their desired
domain name, but also identify the domain name’s underly-
ing language. For example, a registrant may want to register
a dotcom domain for smpaseiite, the Bulgarian word for
“Hello.” A registrar such as GoDaddy offers to the registrant a
registration interface in which, for example, the registrant fills
out a request electronic form. In the form, the user enters in a
domain name field the requested name, 3upasciire , and fur-
ther selects Bulgarian under a language field. Once the reg-
istrant submits the request, the registrar may perform a
search. If the registrar determines that the requested domain
name has not been previously registered, it may allow the
registrant to register the IDN. In particular, upon submission
by the user, the registrar converts the IDN (here 3mpageiire) to
a Punycode value (for example, XN--80AEEGAHS6CWA)
and uses that value in subsequent actions.

Some problems however, may arise if the registrant selects
the wrong language. For instance, in the above example of the
string sapaseiite , the registrant may mistakenly select Rus-
sian instead of Bulgarian. This selection will not be accurate,
because the Russian term for “Hello™ is snpanctryiite andnot
supasciire . Many registrars and backend registry operators
will allow such a transaction to go forward with the erroneous
language tag and without performing any language verifica-
tion. Such a behavior may not be desirable for users. In the
above example, for instance, the registrant may have

10

15

20

25

30

35

40

45

50

55

60

65

2

mistyped the name and may have intended a valid Russian
word that is different from supasciire . Alternatively, the reg-
istrant may have intended to register the name 3npaneiite as a
Bulgarian domain name and have selected Russian by error.
In either case, the users may prefer that the registrar prevent
the registration or at least issue a warning before allowing the
registrant to register the IDN under the incorrect language.
Solutions are needed to address these and similar problems
related to detecting and setting the language of IDNs.

SUMMARY

In some embodiments, a method for detecting a language
of an Internationalized Domain Name (IDN) comprises
receiving, by an [/O interface, a string of characters for the
IDN; receiving training data, including a plurality of multi-
gram analyses for a set of languages; analyzing, by a proces-
sor, the string of characters based on the training data,
wherein the analyzing includes extracting a set of multi-
grams from the string of characters and comparing the
extracted set of multi-grams with the training data; detecting
the language of the IDN based on results of the analyzing.

In some embodiments, the plurality of multi-gram analyses
include trigram analyses. In some embodiments, the analyz-
ing includes using a Bayesian classification system.

In various embodiments, the method further comprises
comparing the detected language of the IDN with a user
selected language, and further comprises using the IDN to
generate a domain name, if the comparing indicates that the
detected language of the IDN is consistent with the user
selected language. In some embodiments, the method further
comprises rejecting the IDN for generating a domain name, if
the comparing indicates that the detected language of the IDN
is not consistent with the user selected language. In some
embodiments, the method further comprises finding one or
more suggested IDNs that are consistent with the user
selected language. In some embodiments, the method further
comprises proposing to a user the detected language as a
substitute for the user selected language.

In some embodiments, analyzing includes calculating a set
of probabilities each indicating a relative probability that the
language of the IDN is one of the set of languages, and
wherein detecting the language of the IDN includes present-
ing one or more of the set of probabilities. In some embodi-
ments, the method further comprises rejecting the IDN if the
detected language of the IDN does not belong to a set of
acceptable languages.

In some embodiments, a system for detecting a language of
an IDN comprises a storage for storing training data, wherein
training data includes a plurality of multi-gram analyses for a
set of languages; an I/O interface for receiving a string of
characters for the IDN; a parser module configured to parse
the string of characters and to extract a set of multi-grams
from the string of characters; and a classifier module config-
ured to compare the extracted set of multi-grams with the
training data and to detect the language of the IDN.

In some embodiments, the classifier module includes a
Bayesian classification system. In some embodiments, the
system further comprises a decider module configured to
compare the detected language of the IDN with a user
selected language. In some embodiments, the decider module
is further configured to reject the IDN for generating a domain
name, if the decider module determines that the detected
language of the IDN is not consistent with the user selected
language. In some embodiments, the decider module is fur-
ther configured to propose to a user one or more suggested
IDNSs that are consistent with the user selected language or to

US 9,218,335 B2

3

propose to the user the detected language as a substitute the
user selected language. In some embodiments, the system
further comprises a decider module configured to reject the
IDN if the detected language of the IDN does not belong to a
set of acceptable languages.

In some embodiments, a non-transitory computer readable
medium for storing computer programs executable by one or
more computers, wherein the computer programs, when
executed by the one or more computers, cause the one or more
computers to implement the method for detecting a language
of the IDN.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings are not necessarily to scale or exhaustive.
Instead, emphasis is generally placed upon illustrating the
principles of the inventions described herein. The accompa-
nying drawings, which are incorporated in and constitute a
part of this specification, illustrate several embodiments con-
sistent with the disclosure and together with the description,
serve to explain the principles of the disclosure. In the draw-
ings:

FIG. 1 shows a flow chart for validating an IDN according
to various embodiments.

FIGS. 2A and 2B show exemplary tri-gram tables accord-
ing to some embodiments.

FIG. 3 shows a flowchart for detecting the language of an
IDN according to some embodiments.

FIGS. 4 and 5 show flowcharts for interacting with a
requester according to some embodiments.

FIG. 6 shows a block diagram for an IDN validation system
according to some embodiments.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. Wherever possible, the same reference num-
bers are used in the drawings and the following description to
refer to the same or similar parts. Also, similarly-named ele-
ments perform similar functions and are similarly designed,
unless specified otherwise. Numerous details are set forth to
provide an understanding of the embodiments described
herein. The embodiments may be practiced without these
details. In other instances, well-known methods, procedures,
and components have not been described in detail to avoid
obscuring the embodiments described. While several exem-
plary embodiments and features are described herein, modi-
fications, adaptations, and other implementations are pos-
sible, without departing from the spirit and scope of the
invention. Accordingly, the following detailed description
does not limit the invention. Instead, the proper scope of the
invention is defined by the appended claims.

To validate a requested IDN, in some embodiments a reg-
istrar performs a character-based validation of the requested
IDN against the selected domain name language. To that end,
the system checks that the Unicode characters in the
requested IDN fall within the range of Unicode characters
belonging to the selected language. Different languages,
however, may share some or all of their characters. For
example, Cyrillic languages (e.g., Russian, Bulgarian, etc.)
all share at least some of their characters. In these cases,
therefore, a character-based validation system may only
determine that a requested domain name includes characters
that do or do not belong to the selected language. The system
cannot, thus, fully validate the language of the IDN by deter-
mining that the requested domain name, as a whole, is a valid
name in the selected language. For example, the character-

10

15

20

25

30

35

40

45

50

55

60

65

4

based validation system may determine that all characters in
sapaseiire could be used in the Bulgarian language or in the
Russian language. But the system cannot determine that the
word sapaseiite could only be a valid name in Bulgarian and
not in Russian. Therefore, the system cannot address the
needs of a user who, for example, may wish to accept
3apaseiite as a domain name only in Bulgarian and not in
Russian.

Moreover, a simple search of dictionaries may not suffice
to verify the language of an IDN. Many IDNs are pseudo-
words of a language. A pseudo-word can be, for example, a
word that is derived from, but is not identical, to one or more
words in the desired language. Similarly, a pseudo-word can
include parts that are derived from one or more words, or are
parts of one or more words, in the desired language. For
example, the domain name VeriSign may not be found as an
existing word in an English dictionary. The word VeriSign,
however, includes various parts (e.g., Veri, Sign), each of
which can be recognized either a full word in English; or a
part or a root of a word in English.

To address these needs, various embodiments provide
methods and systems for automated language detection of
IDNs. Some embodiments enable validating the language of
an IDN. In particular, in some embodiments and unlike exist-
ing systems, a registrar may be able to check whether the
language of a requested IDN is the same as the language
selected by the user. In some embodiments, a language veri-
fication system is able to determine the language of a pseudo-
word IDN. For example, in some embodiments, a language
verification system is able to determine that the domain name
verisign is, with a high probability, a pseudo-word in English.
In some embodiments, if the proposed IDN does not match
the selected language, the TLD system issues an error mes-
sage to alert the user about the mismatch, or takes further
actions to remedy the mismatch.

FIG. 1 shows a flow chart 100 for validating an IDN, as
performed by an IDN language detection system and accord-
ing to various embodiments. In flow chart 100, the system
receives, validates, and takes actions regarding an IDN. In
particular, in block 102, the system receives a request for an
IDN. In various embodiments, the system receives the request
from a requester who is a user or is another system.

In block 104 and according to some embodiments, the
system converts the received IDN to a format usable by the
system for its further analysis. In some embodiments, the
system checks whether the received IDN is in Punycode and,
if so, converts it into Unicode. In some embodiments, the
system converts all IDNs for which the encoding is not UTF-8
to UTF-8 Unicode.

Inblock 106, the system detects the language of the IDN. In
some embodiments, the system uses an n-gram analysis of the
IDN to detect the language of the IDN;, in the manner detailed
below.

Inblock 108, the system validates the detected language. In
some embodiments, the system marks the IDN as valid if the
detected language is the same as the language selected by the
user. In some embodiments, the system validates the detected
language against a set of acceptable languages in accordance
with a policy of the registry operator.

Ifthe IDN is valid (block 108, yes), in block 110 the system
allows creating a domain with the IDN. If the IDN is not valid
(block 108, no), in block 112 the system interacts with the
requester regarding the invalidated IDN, in the manner
detailed below. In some embodiments, the method of flow-
chart 100 and the corresponding system is also used for

US 9,218,335 B2

5

detecting the language of domain names that are not interna-
tional and instead belong, for example, to the western Euro-
pean set of languages.

To auto-detect the language of an IDN, some embodiments
use multi-gram analysis. A multi-gram, or an n-gram, is a
contiguous sequence of n characters in a given sequence of
text or speech. A trigram, for example, is a contiguous
sequence of three characters in a text or a speech. In some
embodiments, for analyzing a text or an IDN, only alphabetic
characters are used and non-alphabetic characters, such as
numeric or punctuation characters, are excluded.

Various languages differ by the combination of multi-
grams that they use. For example, various languages differ in
the type or frequencies of their multi-grams, that is, what
multi-grams they use and how often they use each multi-
gram. FIGS. 2A and 2B, for example, compare the frequen-
cies of trigrams in English and in French according to some
embodiments. FIG. 2A shows an exemplary table 200 which
includes a sorted list of the most frequently used tri-grams in
English according to some embodiments. In particular, table
200 lists the trigrams in order of their frequencies, in this case
their average number of occurrences in a 10,000 word English
text. Each entry shows a trigram and its average frequency.
Table 200 is an exemplary list, used for illustration purposes
only.

The data in table 200 are included in 25 rows and 8 col-
umns, as numbered. The data are sorted, in order of decreas-
ing frequency, from top to bottom and then from left to right.
That is, the most frequent trigram is the entry in row 1, column
1 (entry 202) and the second most frequent entry is the one in
row 2, column 1 (entry 204). In the same manner, the next
frequent entries follow in rows 3 to 25 of column 1, followed
by entries in rows 1 to 25 of column 2, and so on, with the least
frequent entry of Table 200 listed as the last entry in row 22 of
column 8.

Each entry in Table 200 shows the three characters of each
trigram followed by a number representing its average fre-
quency. For trigrams in table 200, the number sign (#) repre-
sents a word boundary, which could be located in a text by, for
example, a space, a period, or an apostrophe. Moreover, table
200 does not distinguish between lower and upper case letters
in a trigram, and all trigrams are shown in upper case. The
most frequent entry, entry 202 in row 1 of column 1, for
example, includes the trigram “#TH” and the frequency 230.
Entry 202, thus indicates that in an English text with 10,000
words, the combination of a word boundary followed by the
two letter “t” and “h”, that is a “th” at the start of a word,
occurs 230 times in the average. This average frequency, 230
occurrences per 10,000 words, is the largest frequency listed
in table 200. Entry 204 in row 2 of column 1, on the other
hand, indicates that the second most frequent trigram in
English is “THE”, with an average frequency of 192 occur-
rences in 10,000 words. Similarly, the two entries in row 25 of
column 1and row 1 of column 2 indicate that the 25% and 26
most frequent trigrams in English texts are respectively the
trigrams “AS#” with a frequency of 42, and “AT#” with a
frequency of 41. The least frequent trigrams shown in table
200 are 33 entries, all with an average frequency of 10 per
10,000 words, recorded in row 15 of column 7 to row 22 of
column 8. To save space, table 200 has been truncated at this
frequency and does not show trigrams with average frequen-
cies that are lower than 10 occurrences per 10,000 words.

FIG. 2B shows an exemplary table 250 which includes a
sorted list of the most frequently used tri-grams in French
according to some embodiments. The organization of the data
in table 250 is similar to that of table 200. Entry 252, thus
indicates that in a French text with 10,000 words, the trigram

20

25

35

40

45

6

“ES#” is the most frequent trigram, with an average fre-
quency of 1359 occurrences in 10,000 words. Entry 254, on
the other hand, indicates that the second most frequent tri-
gram in French is “#DE”, with an average frequency of 1108
occurrences in 10,000 words. Comparing FIGS. 2A and 2B,
thus indicates that an average English text can be distin-
guished from an average French text by the frequency of their
n-grams, in this case trigrams. For instance, in French the
trigram “ES#” is the most frequent trigram with an average
frequency of 1359. In English, on the other hand, “ES#” is
ranked 22"¢ with a frequency of 47 (see table 200, row 22,
column 1). Alternatively, in some embodiments, a common
English word is distinguished from a common French word
based on the trigrams included in each word. In particular, in
some embodiments, the language of an IDN is detected based
onits trigrams. For example, a word that includes more “ES#”
is more likely to be French than English. Some embodiments
combine such probabilities for all trigrams of an IDN to
identify an associated language with a high degree of cer-
tainty.

In some embodiments, the system detects the language of
an IDN by analyzing the multi-grams used in the IDN against
the frequencies of multi-grams in various languages. FIG. 3
shows a flowchart 300 for detecting the language of an IDN
according to some embodiments. In flowchart 300, the system
extracts multi-grams in an IDN and compares the extracted
multi-grams against statistical data of multi-grams in various
languages.

Inparticular, in block 302, the system extracts multi-grams
included in the IDN to be used for analyzing the IDN. In
various embodiments, the system extracts these multi-grams
by parsing the string of characters in the IDN and dividing the
string into consecutive multi-grams, each starting with one of
the characters in the IDN. In some embodiments, the system
extracts the n-grams for only one value of n. In some embodi-
ments, the system extracts n-grams for n=3, that is, trigrams.
For example, from the IDN “VeriSign”, the system can
extract one or more of the following trigrams: “#VE”,
“VER”, “ERI”, “RIS”, “IST”, “SIG”, “IGN”, and “GN#”. In
this example, the first and last trigrams respectively include a
starting and an ending word boundary. In some embodiments
the system extracts and uses n-grams for more than one value
ofn,suchas 1, 2,3, or 4.

In some embodiments, to extract n-grams from the IDN,
the system slides an n-character window over the sequence of
characters in the IDN. In some embodiments, before starting
the extraction, the system first appends to the IDN leading and
ending spaces or other types of word boundaries (shown
above as #). Code (1) is an exemplary high-level computer
program for extracting n-grams from an IDN. In line 1, code
(1) receives the IDN as the string “strTagl”, and also receives
the number n for the n-gram. In line 9, code (1) appends word
boundaries to the IDN, as one space at the beginning and one
space at the end (represented by a # character). In lines 13,
code (1) scans the string constituting the appended IDN, from
the start to n-1 characters before the end. In lines 14-16, for
each of the scanned characters, code (1) extracts from the
string an n-gram starting with the scanned character.

def IndexNgrams(strTag, n):
strTag = StripTLD(strTag).upper()
objNgramList = list()
IndexNgram(strTag, n, objNgramList)
return objNgramList

B Y T

def IndexNgram(strTagl, n, objNgramList):

US 9,218,335 B2

7

-continued

9 strTag = “#” + strTagl + “#”
intLength = len(strTag)
for i in range(0, intLength):
if i <(intLength - (n - 1)):
currWord = strTag[i:i+n]
objNgramList.append(currWord)

return

M

In block 304 of flowchart 300, the system loads training
data. In various embodiments, the training data are data
extracted from various languages. In some embodiments, the
training data are the data for frequencies of n-grams in mul-
tiple languages. For example, in some embodiments, training
data include trigram frequency data, similarto those shown in
FIG. 2A or 2B. In some embodiments, training data include a
list of multi-grams, sorted in order of decreasing frequency,
for each of the multiple languages. In some embodiments, for
each multi-gram, the training data shows its rank in the
ordered list of multi-grams. In some embodiments, the train-
ing data shows the average frequency of each multi-gram. In
various embodiments, frequencies are actual or normalized
for each 10,000 words of text. In some embodiments, upon
starting up a software application, a software initialization
step pre-loads the training data to a readily accessible
memory and subsequently reads that data from the memory.

In some embodiments, the multiple languages for which
the training data are loaded include a set of candidate lan-
guages. As used in this application, a set can include one or
more members. In some embodiments, the set of candidate
languages includes the language selected by the user. Further,
in some languages, the set of candidate languages includes
other languages to which the IDN may belong. In some
embodiments, the set of candidate languages includes one or
more languages that belong to the same family of languages
as the selected language. In some embodiments, the set of
candidate languages includes one or more languages that
share some or all of characters used by the selected language.
For example, in some embodiments, if the user selects the
Latin family of languages, the set of candidate languages
includes English and one or more west European languages.
Similarly, in some embodiments, if the user selects Cyrillic,
the set of candidate languages includes Russian, Bulgarian,
and Ukrainian, which have in common at least some their
characters.

In various embodiments, the system obtains the training
data for each of the candidate languages from a database
storing those data. In some embodiments, the system derives
the training data for a language by extracting multi-grams
from samples of large texts in that language and computing

10

15

20

25

30

35

40

45

50

55

60

65

8

the statistics of the extracted multi-grams. For example, in
some embodiments, the statistics includes a sorted list of the
frequencies of each unique multi-gram in the sample. In some
embodiments, the statistics are derived from one or more
large volumes of sample texts in the language. In some
embodiments, the type of sample texts depends on the context
of'the IDN. For example, in some embodiments, for an IDN of
a technical domain, the sample texts include technical texts,
while for an IDN of a retail domain, the sample texts include
texts that are commonly read by consumers. In some embodi-
ments, the sample texts include texts that best represent the
language, such as popular or classical books, web-based
texts, legal texts such as constitutions, and newspaper articles
and texts. In some embodiments, to derive the training data,
the texts of a language are first divided into words and then
those words are analyzed for their trigrams. In some embodi-
ments, when analyzing the words of a text, only alphabetic
characters are included and other characters such as numeric
characters or punctuations are excluded from the analyzed
text.

In block 306, the system uses the IDN’s multi-grams (the
multi-grams extracted from the IDN) and the training data to
analyze the IDN. In some embodiments, the system analyzes
the IDN by comparing the IDN’s multi-grams with the sta-
tistics of the multi-grams in the set of candidate languages.
Some embodiments analyze the IDN using a machine-learn-
ing algorithm, such as Bayesian classification. In employing
Bayesian classification, some embodiments use supervised
machine learning methods. Some methods are based on
applying the Bayes theorem to calculating the probability of
object O belonging to class C, given a list of classes with
associated training data describing the unique features of
each class, e.g. P(OIC,, . .. C). When applied to this particu-
lar problem set, in some embodiments the variable O repre-
sents the domain name and each member of the series C
represents a candidate language. Alternatively, some embodi-
ments analyze the IDN using one or more of other methods
such as Dice coefficient, Jacard coefficient, TF-IDF, Decision
Trees, Support Vector Machines, or K Nearest Neighbor
methods. In some embodiments, the analysis system receives
the IDN’s multi-grams and the training data. The system then
derives the language of the IDN by comparing the IDN’s
multi-grams and those in the training data in the set of can-
didate languages.

In some embodiments, to analyze the IDN, the system first
performs a character-based analysis of the IDN. In some
embodiments, by doing so, the system may narrow the search
for the language of the IDN by excluding some of the lan-
guages from the set of candidate languages. Alternatively, the
character-based analysis may result in adding some new lan-
guages to the set of candidate languages. For example, in
some embodiments, if a character-based analysis shows that
the IDN includes characters that are used in Russian or Bul-
garian but not in English (e.g., Cyrillic characters), the system
may exclude English from the set of candidate languages, and
add Russian and Bulgarian to the set of candidate languages.

In some embodiments, the system then detects the lan-
guage of the IDN by analyzing its multi-grams against the
training data for the candidate languages. Code (2) shows an
exemplary high-level computer program for analyzing an
IDN’s trigrams and determining its language using the Dice
coefficient method, according to one embodiment. In particu-
lar, in lines 2-3, code (2) loads the training data for the set of
candidate languages. In code (2), the set of candidate lan-
guages consist of Arabic, Bulgarian, Russian, Czech,
English, German, and French. Code (2) analyzes the IDN
(strUTF8) by calculating a score for the IDN against each of

US 9,218,335 B2

9

the candidate languages. The score is arelative measure of the
probability that the IDN belongs to the corresponding lan-
guage as compared to other candidate languages. Code (2)
finds the detected language (strl.anguage) as the language for
which the score (IgScore) is the largest. In line 4, code (2)
initializes the largest found score to zero and in line 5, initial-
izes the detected language to “unknown”.

In line 6, code (2) extracts the IDN’s trigrams by calling a
function similar to that shown in code (1). In lines 7-13, code
(2) loops over candidate languages. For each candidate lan-
guage, code (2) calculates the score for the IDN (line 9), and
picks the language with the largest score as the detected
language (lines 10-13). Lines 15-28 of code (2) calculate the
score of the IDN for a language. In particular, the Calculate-
Common method at lines 22-28 calculates a total weight
(intResults) based on IDN’s trigrams. More specifically, line
25 finds the trigrams that are common between the IDN and
all trigrams in the language, and lines 26-28 sums weights for
those common trigrams. Each weight is based on the ordinal
number of the trigram, with a larger weight for smaller ordinal
number. Line 19 calculates the score by dividing the weight
with the total number of trigrams in the IDN.

1 defDetectLanguage(sttUTF8):

2 objTrainingData = { ‘Arabic’ : ‘artxt’, ‘Bulgarian’ :
3 ‘bg.txt’, ‘Russian’ : ‘ru.txt’, ‘Czech’ : ‘cs.txt’,
‘English’: ‘en.txt’, ‘German’: ‘de.txt’, ‘French’:
frtxt’}
4 intScore = float(0)
5 strLanguage = “Unknown”
6 strTrigrams = IndexNgrams(strUTFg, 3)
7 for strInstance in objTrainingData:
8 strLg =
GetTrigrams(objTrainingData[strInstance])
9 lgScore = calculateScore(strLg, strTrigrams)
10 if lgScore > intScore:
11 strLanguage = strlnstance
12 intScore = lgScore
13 return strLanguage
14
15 def calculateScore(strLanguage, strTrigrams):
16 intRawScore = float(0)
17 intTotal = float(len(strTrigrams))
18 intCommon = CalculateCommon(strLanguage,
strTrigrams)
19 intAnswer = float(intCommon/intTotal)
20 return intAnswer
21
22 def CalculateCommon(strLanguage, str'Trigrams):
23 intResults = 0
24 intTrigramTotal = len(strLanguage)
25 objInCommon =
set(strLanguage).intersection(set(strTrigrams))
26 for strTri in objInCommon:
27 intResults += (intTrigramTotal —
strLanguage.index(strTri))
28 return intResults
29
31
32
33
34
35)

In some embodiments, the training data include n-gram
frequencies, such as those shown the examples of FIGS. 2A
and 2B, and calculating the total weight of an IDN uses each
n-gram’s frequency and not its ordinal number. Code (3)
below shows an exemplary CalculateCommon method for
such an embodiment. In code (3), the input variable strl.an-
guage is a list in which the key-value pairs comprise the
n-gram and the associated frequency. Moreover, at lines 5-7,
the frequencies are summed and returned by the Calculate-
Common method.

10

15

20

25

30

35

40

45

50

55

60

65

10

def CalculateCommon(strLanguage, strTrigrams):
intResults = 0
objInCommon =
set(strLanguage.keys()).intersection(set(str Trigrams))
for strTri in objInCommon:
intResults += strLanguage [strTri]
return intResults

3

R R N

Block 308 of the flowchart detects the language of the IDN
based on the results of analyzing the IDN against the candi-
date languages. In some embodiments, the language of the
IDN is detected as the most probable language based on the
multi-gram analysis. In some embodiments, the system out-
puts more than one language as possible languages for an
IDN. In some embodiments, the system sorts the possible
languages by their probabilities.

In some embodiments, once the system detects the lan-
guage of the IDN, it validates the language against a regis-
trar’s policy or one or more acceptable languages, as noted in
block 108 of flowchart 100. In some embodiments the
detected language is valid if it is the same as the language
selected by the user. In some embodiments, a detected lan-
guage is valid if it belongs to a set of acceptable languages. In
some embodiments, a TLD registry system limits second-
level (and higher) domain registrations to a specific subset of
languages and rejects other languages. For example, an East
Asian company with a brand TLD may set a policy to limit
21D registrations to the set of acceptable languages that
consists of English, Mandarin, Hangul, Vietnamese, and
Japanese, while disallowing other languages.

In some embodiments, while a TLD registry does not limit
the language of the 2L.Ds, it nevertheless validates the
selected languages to improve performance, usability, and
data quality for registry operators. In some embodiments, the
TLD registry informs the requester registrant of a mismatch
between the requested IDN’s language and the selected lan-
guage. In some embodiments, the TLD registry system also
proposes to the requester an acceptable language or an
acceptable IDN.

Invarious embodiments, if the IDN’s language is valid, the
system allows creation of a new domain with the IDN, as
noted in block 110 of flowchart 100. If the IDN’s language is
not valid, on the other hand and as indicated in block 112 of
flowchart 100, the system may interact with the requester to
address the mismatch. In some embodiments, the system
interacts with the requester by informing the requester of the
detected language and verifying whether the requester in fact
meant to create the new domain name under the detected, and
not the selected, language. Alternatively, in some embodi-
ments, the system interacts with the requester by proposing
other IDNs that match the user’s selected language.

FIG. 4 shows a flowchart 400 for interacting with the
requester according to some embodiments. In block 402, the
system proposes to the user a language other than the one
selected by the user. In some embodiments, the proposed
language is the detected language of the IDN.

In decision block 404, the system analyzes a response from
the requester. If the requester accepts the proposed language
(block 404: yes), in block 406 the system allows creation of a
new domain with the proposed IDN under the proposed lan-
guage. In some embodiments, the language of an IDN is
recorded in a database.

If the requester does not accept the proposed language
(block 404: no), in block 408 the system logs a failure for
creating the domain and exits the flow chart. In various
embodiments, the system logs a failure by issuing a failure

US 9,218,335 B2

11
message, by sending a signal indicating a failure, or by log-
ging in a log file the details of the failure.

FIG. 5 shows a flowchart 500 for interacting with the
requester upon finding an invalid IDN, in accordance with
some embodiments. In block 502, the system proposes an
IDN thatis different from the IDN entered by the requester. In
some embodiments, the system picks the proposed IDN from
among a pool of IDNs for which the language is the detected
language. In some embodiments, the pool of IDNs is a set of
IDNS that are available and are consistent with some criteria
entered by the requester. In some embodiments, the criteria
include the type of activity, business, or users covered by the
requested domain. In some embodiments, this new IDN is
derived by a language look-up method that searches a dictio-
nary in the desired language and finds a term similar to the
entered IDN.

In decision block 504, the system analyzes a response from
the requester as to whether or not the requester accepts the
proposed IDN. If the requester accepts it (block 504: yes), in
block 506 the systems allows creation of a new domain with
the proposed IDN under the language selected by the
requester.

If, on the other hand, the requester does not accept the
proposed IDN (block 504: no), in decision block 508 the
system determines whether continue with proposing other
IDNs, or whether an end condition is met for ending the
interaction with the requester. In various embodiments, the
end condition is met if a specific time limit has been reached,
a specific number of IDNs has been proposed and rejected by
the requester, the requester selects an option to end the inter-
action, or the set of IDNs in pool of IDNs is exhausted. If the
end condition is not met (block 508: no), the system loops
back to block 502 and proposes a new IDN that has not yet
been considered. On the other hand, if the end condition is
met (block 508: yes), in block 510 the system logs a failure
and exits flowchart 500.

In some embodiments, an IDN validation system is used to
categorize the language of one or more IDNs. Such systems
can be used by various users such as “domainers,” who
engage in domain name speculation and trade domain names
on secondary markets. As IDNs become more prevalent,
domainers may become increasingly interested in targeting
language-dependent domain names that resonate with a par-
ticular geographic market. For instance, a particular domain
name with no value in Russia may have a significant value in
Bulgaria because it corresponds to a frequently-searched Bul-
garian language keyword. Such factors are also important in
“drop catching,” which is the highly competitive business of
registering expiring domain names as the TLD registries
delete them. According to one estimate, over 100,000 domain
names for all TLDs are typically deleted on any given day. In
some embodiments, the IDN validation system is used to
quickly categorize each available domain name by its lan-
guage.

In various embodiments, a system performs the methods
for validation of an IDN and for interacting with a requester.
FIG. 6 shows a block diagram for such a system 600 accord-
ing to some embodiments. System 600 includes an input/
output (I/O) interface 610, a decider module 620, a parser
module 630, a classifier module 640, and an n-gram database
650.

In some embodiments, I/O interface 610 is configured for
interacting with users of the system. In various embodiments,
1/0 interface 610 includes one or more of a mouse, a key-
board, a display, a speaker, or atouch screen. In some embodi-
ments, 1/O interface is an interface for receiving and sending
data to other automated systems.

40

45

12

Invarious embodiments, decider module 620 is configured
to receive the inputs, interact with other modules in system
600, or make various decisions. In particular, in some
embodiments, decider module 620 is configured to received
the IDN and the selected language from 1/O interface 610, to
send the IDN or the converted version of the IDN to parser
module 630, and to receive from classifier module 640 the
detected language of the IDN. Further, in various embodi-
ments, decider module 620 is configured to make a decision
whether to accept or to reject the IDN based on the detected
language. Decider module 620 is also configured to interact
with a requester of the IDN or to issue a signal for allowing or
disallow the creation of the domain under the IDN. Further, in
some embodiments, decider module is configured to propose
to the requester the detected language or an IDN that is
consistent with the selected language.

Parser module 630 receives the IDN from decider module
620 and extracts its n-grams. In some embodiments, parser
module 630 extracts the IDN’s n-grams for one or more
values of n which include n=3. In various embodiments,
parser module 630 passes the extracted n-grams to classifier
module 640.

In some embodiments, n-gram database 650 stores training
data for a set of candidate languages. In some embodiments,
the stored training data correspond to a set of candidate lan-
guages commonly used by requesters of system 600. In some
embodiments, the stored training data correspond to a set of
languages that are acceptable to the TLD registry. In various
embodiments, the training data are read from n-gram data-
base 650 by classifier module 640.

Classifier module 640 receives IDN’s extracted n-grams
from parser module 630, reads training data from n-gram
database 650, and accordingly detects the language of the
IDN. In some embodiments, classifier module 640 utilizes
one or more classification methods to detect the language of
the IDN. In various embodiments, the classification methods
include Naive Bayes, Dice coefficient, TF-IDF, Decision
Trees, Support Vector Machines, or K Nearest Neighbor
methods. In some embodiments, classifier module 640
detects the language of the IDN by comparing the extracted
n-grams with the training data in the n-gram database. Clas-
sifier module 640 passes the detected language to decider
module 620.

In various embodiments, one or more of the disclosed
modules are implemented via one or more computer proces-
sors executing software programs for performing the func-
tionality of the corresponding modules. In some embodi-
ments, one or more of the disclosed modules are implemented
via one or more hardware modules executing firmware for
performing the functionality of the corresponding modules.
In various embodiments, one or more of the disclosed mod-
ules or disclosed storage media are internal or external to the
disclosed systems. In some embodiments, one or more of the
disclosed modules or storage media are implemented via a
computing “cloud”, to which the disclosed system connects
via an internet and accordingly uses the external module or
storage medium. In some embodiments, the disclosed storage
media for storing information include non-transitory com-
puter-readable media, such as a CD-ROM, a computer stor-
age, e.g., a hard disk, or a flash memory. Further, in various
embodiments, one or more non-transitory computer-readable
media store information or software programs executed by
various modules or implementing various disclosed methods.

The foregoing description of the invention, along with its
associated embodiments, has been presented for purposes of
illustration only. It is not exhaustive and does not limit the
invention to the precise form disclosed. Those skilled in the

US 9,218,335 B2

13

art will appreciate from the foregoing description that modi-
fications and variations are possible in light of the above
teachings or may be acquired from practicing the invention.
For example, the steps described need not be performed in the
same sequence discussed or with the same degree of separa-
tion. Likewise various steps may be omitted, repeated, or
combined, as necessary, to achieve the same or similar objec-
tives. Similarly, the systems described need not necessarily
include all parts described in the embodiments, and may also
include other parts not describe in the embodiments.
Accordingly, the invention is not limited to the above-
described embodiments, but instead is defined by the
appended claims in light of their full scope of equivalents.

The invention claimed is:

1. A method for detecting a language of an International-
ized Domain Name (IDN), the method comprising:

receiving, by an I/O interface, a string of characters for the

IDN;

receiving a user selected language, via the 1/O interface,

corresponding to the IDN;
determining a plurality of candidate languages based on
the user selected language, wherein the plurality of can-
didate languages comprises the user selected language
and other languages that share some or all characters
with the user selected language or that belong to the
same language family as the user selected language;

receiving training data, comprising a plurality of multi-
gram analyses for each language of the plurality of can-
didate languages;

analyzing, by a processor, the string of characters based on

the training data, wherein the analyzing includes extract-
ing a set of multi-grams from the string of characters and
comparing the extracted set of multi-grams with the
training data;

detecting the language of the IDN based on results of the

analyzing;

determining that the language of the IDN that was detected

does not match the user selected language;

rejecting the IDN for generating a domain name in

response to the determination that the language of the
IDN that was detected does not match the user selected
language, wherein rejecting the IDN for generating a
domain name comprises transmitting a warning to a
user;

receiving, in response to the warning, an indication from

the user, via the I/O interface, to use the IDN to generate
a domain name; and

using the IDN to generate a domain name in response to

receiving the indication from the user.

2. The method of claim 1, wherein the plurality of multi-
gram analyses include trigram analyses.

3. The method of claim 1, wherein the analyzing includes
using a Bayesian classification system.

4. The method of claim 1, further comprising:

detecting a language of a second IDN;

determining that the language that was detected matches a

second user selected language; and

using the second IDN to generate a domain name in

response to the determination that the language that was
detected matches the second user selected language.

5. The method of claim 1, further comprising finding one or
more suggested IDNs that are consistent with the user
selected language.

6. The method of claim 1, further comprising proposing to
a user the detected language as a substitute for the user
selected language.

10

15

20

25

30

35

40

45

50

55

60

65

14

7. The method of claim 1, wherein analyzing includes
calculating a set of probabilities each indicating a relative
probability that the language of the IDN is one of the plurality
of candidate languages, and wherein detecting the language
of the IDN includes presenting one or more of the set of
probabilities.

8. The method of claim 1, further comprising rejecting the
IDN if the detected language of the IDN does not belong to a
set of acceptable languages.

9. A system for detecting a language of an Internationalized
Domain Name (IDN), the system comprising:

a processing system comprising one or more processors;

and

a memory system comprising one or more computer-read-

able media, wherein the one or more computer-readable
media contain instructions that, when executed by the
processing system, cause the processing system to per-
form operations comprising:

receiving, by an 1/O interface, a string of characters for the

IDN;

receiving a user selected language, via the I/O interface,

corresponding to the IDN;
determining a plurality of candidate languages based on
the user selected language, wherein the plurality of can-
didate languages comprises the user selected language
and other languages that share some or all characters
with the user selected language or that belong to the
same language family as the user selected language;

receiving training data, comprising a plurality of multi-
gram analyses for each language of the plurality of can-
didate languages;
analyzing the string of characters based on the training
data, wherein the analyzing includes extracting a set of
multi-grams from the string of characters and comparing
the extracted set of multi-grams with the training data;

detecting the language of the IDN based on results of the
analyzing;

determining that the language of the IDN that was detected

does not match the user selected language;

rejecting the IDN for generating a domain name in

response to the determination that the language of the
IDN that was detected does not match the user selected
language, wherein rejecting the IDN for generating a
domain name comprises transmitting a warning to a
user;

receiving, in response to the warning, an indication from

the user, via the I/O interface, to use the IDN to generate
a domain name; and

using the IDN to generate a domain name in response to

receiving the indication from the user.

10. The system of claim 9, wherein the plurality of multi-
gram analyses include trigram analyses.

11. The system of claim 9, wherein the analyzing includes
using a Bayesian classification system.

12. The system of claim 9, the operations further compris-
ing at least one of finding one or more suggested IDNs that are
consistent with the user selected language and proposing to a
user the detected language as a substitute for the user selected
language.

13. The system of claim 9, the operations further compris-
ing rejecting the IDN ifthe detected language ofthe IDN does
not belong to a set of acceptable languages.

14. A non-transitory computer readable medium for stor-
ing computer programs executable by one or more comput-
ers, wherein the computer programs, when executed by the
one or more computers, cause the one or more computers to

US 9,218,335 B2

15

implement a method for detecting a language of an Interna-
tionalized Domain Name (IDN), the method comprising:

receiving, by an I/O interface, a string of characters for the
IDN;

receiving a user selected language, via the 1/O interface,
corresponding to the IDN;

determining a plurality of candidate languages based on
the user selected language, wherein the plurality of can-
didate languages comprises the user selected language
and other languages that share some or all characters
with the user selected language or that belong to the
same language family as the user selected language;

receiving training data, comprising a plurality of multi-
gram analyses for each language of the plurality of can-
didate languages;

analyzing, by a processor, the string of characters based on
the training data, wherein the analyzing includes extract-
ing a set of multi-grams from the string of characters and
comparing the extracted set of multi-grams with the
training data;

detecting the language of the IDN based on results of the
analyzing;

determining that the language of the IDN that was detected
does not match the user selected language;

rejecting the IDN for generating a domain name in
response to the determination that the language of the
IDN that was detected does not match the user selected
language, wherein rejecting the IDN for generating a
domain name comprises transmitting a warning to a
user;

10

15

20

25

16

receiving, in response to the warning, an indication from
the user, via the I/O interface, to use the IDN to generate
a domain name; and

using the IDN to generate a domain name in response to

receiving the indication from the user.

15. The non-transitory computer readable medium of claim
14, wherein the plurality of multi-gram analyses include tri-
gram analyses.

16. The non-transitory computer readable medium of claim
14, wherein the analyzing includes using a Bayesian classi-
fication system.

17. The system of claim 9, the operations further compris-
ing:

detecting a language of a second IDN;

determining that the language that was detected matches a

second user selected language; and

using the second IDN to generate a domain name in

response to the determination that the language that was
detected matches the second user selected language.

18. The non-transitory computer readable medium of claim
14, the method further comprising:

detecting a language of a second IDN;

determining that the language that was detected matches a

second user selected language; and

using the second IDN to generate a domain name in

response to the determination that the language that was
detected matches the second user selected language.

#* #* #* #* #*

